Focus Report New Chemicals Program PMN Number: P-03-0315

Focus Date: Consolidated Set:	02/27/2003 12:0	00:00 AM	R	eport Status:	Completed
Focus Chair:	A. Binder		C	ontractor:	LMB
I. Notice Info	rmation				
Submitter: Chemical Name: Use: Other Uses:	Awaiting ISIS I	² ntry	C	AS Number:	
PV-Max:	X				
Manufacture:	21	Address to a con-		nport:	
Production Volun	ne other information:_	***Binding Option	Not Marked*	i ak ak	
II. SAT Resul	<u>ts</u>				
(1) Health Rating:	1-2	Eco Rating:	3	Com	ments: ;
Additional	SAT information:				
Occupational: NR		Non-Occupational:	-	Enviror	ımental:
(1) PPT					
(1) PBT:	Sets Associtions Retained	A '4' TT	Comments	-	4
Awaiting F Entry	ate Awaiting Fate Entry	Health Entry		Awaiting Fate En	try
Awaiting F	ate Awaiting Fate Entry			Awaiting Fate En	try
Entry		Health Entry			
Awaiting F Entry	ate Awaiting Fate Entry	Awaiting Human Health Entry		Awaiting Fate En	try
III. OTHER I	FACTORS	Ticalin Entry			
Categories:	ACTORS				
Health Chemical Car	teroni.		Ecotox SAl	P and	
Ticalui Chemicai Ca	legory.		TSCA New		
			Chemical		
			Category:		
Related Cases/Reg					
Health related Cases:					
Ecotox Related Cases Regulatory History:	s:	I			
Regulatory History.					
MSDS/Label Info	······································				
MSDS/Label Into	rmation: No				
1.15155.	110				
Exposure Based I	nformation:				

Exposure Based Review (Health):

Exposure Based (Environmental):

Exposure Based (Occupational): No

IV. Summary of SAT Assessment

Exposure Based Review:

Exposure Based Review

(Non Occupatuional):

Exposure Based Review (Eco):

```
FATE:
solids with mp's = unk ^{\circ}C (P)
S = dispersible (P)
vp < 1.0E-6 mm Hg or torr at 25 °C (P)
bp > 500 \, ^{\circ}C \, (P)
H < 1.0E-8 (P)
\log Koc > 4.5 (P)
log fish BCF = 0.50 (P)
POTW removal = 99% via sorption
time for complete ultimate aerobic biodegradation > months
sorption to soils and sediments = very strong
PBT Potential: P3B1T1
HEALTH: Absorption nil all routes based on physical/chemical properties;
concern for lung toxicity if inhaled via MW and lung over-load and
                                                                        binding with membranes;
concern for irritation to mucous membranes via cationic binding;
low to moderate concern for toxicity;
ECOTOX: Predicted (P) and measured (M) toxicity values in mg/L (ppm) are:
fish 96-h LC50
                   = 0.280 P
daphnid 48-h LC50 = 0.100 P
green algal 96-h EC50 = 0.040 P
fish chronic value = 0.020 P
daphnid ChV
                   = 0.007 P
algal ChV
                  = 0.020 P
Predictions are based on SARs for
                                             polymers with
                                                                                 ; SAR chemical class =
polymer
                                  (P030315) and
                                                              (P030316);
pH7; effective concentrations based on 100% active ingredients and nominal concentrations; hardness <180.0 mg/L as
CaCO3 for fish and daphnids and 15 to 24 mg/L for green algae; and TOC <2.0 mg/L;
high concern for toxicity;
mitigation of toxicity expected in natural waters with TOC = 10 mg/L; mitigation factor = 100 times;
low concern for environmental risk;
assessment factor = 10.0
concern concentration > 1.0 with mitigation via 10 mg TOC/L;
Fate:
        Fate Summary:
Health:
        Health Summary:
Ecotox:
        Ecotox Values:
        Fish 96-h LC50:
        Daphnid 48-h LC50:
        Green algal 96-h EC50:
        Fish Chronic Value:
        Daphnid ChV:
        Algal ChV:
        Ecotox Factors:
                                   Assessment Factor:
                                   Concern Concentration:
                                    - Acute Value
```

Concern Concentration:
- Chronic Value

Legacy summary of eposures and releases:

V. Summary of Exposures/Releases Engineering Summary:

Exposures/Releases		
Scenario		
Sites		
Media		
Descriptor A		
Quantity A (kg/site/day)		
Frequency A (day/year)		
Descriptor B		
Quantity B (kg/site/day)		
Frequency B (day/year)		
From		
Workers		
Exposure Type		

VI. Focus Decision and Rationale

Regulatory Actions

Regulatory Decision: Drop Decision Date: 02/27/2003

Type of Decision:

Rationale: P03-0315/316 were dropped from further review based on low expected risk to

human health and the environment. Concern for potential risk to human health was addressed by adequate PPE. Although ecotoxicity concern was high, there was no significant risk posed to the environment based on mitigation of risk

100 times with 10 mg of TOC/L. This was a CEB category D3 drop.

P2 Rec Comments:

Testing:

Final Recommended:

Health: Eco:

Fate: Other:

07 01/2016 02 5 28 F

			er. 04/98		
Case #:	P-03-0315 - 3/4	, De	CN:		RECEIVED
SAT Date:	2/14/2003	SA	AT Chair:	V. Nabholz	MAR AM 10: 2
Submitter:					111111111111111111111111111111111111111
Chemical Name:					
CAS RN:		Tra	ade Name:		- A A M 100 - 100
Structure	None				
Molecular Formula:		•			
	WT	%<500:	4	WT%<1000:	
Molecular Wt.	BP:	- i.	>500	WT%<1000: Eq. Wt:	
Molecular Formula: Molecular Wt. MP: H2O Sol (g/L):	BP: Disp		>500 v.p.		<0.000001
Molecular Wt. MP: H2O Sol (g/L): Max. Prod. Volume (BP: Disp	- i.	>500		<0.000001 So
Molecular Wt.	BP: Disp	- i.	>500 v.p.		
Molecular Wt. MP: H2O Sol (g/L): Max. Prod. Volume (BP: Disp	- i.	>500 v.p.		
Molecular Wt. MP: H2O Sol (g/L): Max. Prod. Volume (BP: Disp	- i.	>500 v.p.		
Molecular Wt. MP: H2O Sol (g/L): Max. Prod. Volume (BP: Disp	- i.	>500 V.P. Physical State:		
Molecular Wt. MP: H2O Sol (g/L): Max. Prod. Volume (BP: Disp kg/yr):	persible	>500 V.P. Physical State:	Eq. Wt:	So
Molecular Wt. MP: H2O Sol (g/L): Max. Prod. Volume (BP: Disp kg/yr):	persible	>500 V.P. Physical State:	Eq. Wt:	So
Molecular Wt. MP: H2O Sol (g/L): Max. Prod. Volume (BP: Disp kg/yr):	persible	>500 V.P. Physical State:	Eq. Wt: Case Numbers	So

STRUCTUR	E ACTIVITY TEAM REF	PORT ver. 04/98		
Case #:	P-03-0316	DCN:		
SAT Date:	2/14/2003	SAT Chair:	V. Nabholz	
Submitter:				
Chemical Nam	ie:			
				:
CAS RN:		Trade Name:		
	None			
Structure			10	
ľ				
Molecular Formul			- 40.450	
Molecular Wt.	WT%<50		/T%<1000:	
MP:	BP:	>500		000004
H2O Sol (g/L):	Disper		<0	.000001
Max. Prod. Volum	ne (kg/yr):	Physical State:		Solid
USE:				
Related	Case Numbers C	ase Role Related C	ase Numbers	Case Role
Focus Pater	FEB 27 2009 Resu	ulte: TO PO D		
Focus Date:	Resu	ilts: DROP		

STRUCTURE ACTIVITY TEAM REPORT 14 February 2003 CASE NUMBERS: PO3-0315 and 0316 RELATED CASES: CONCLUSIONS/DISCUSSIONS TYPE OF CONCERN: <u>HEALTH</u> **ECOTOX** LEVEL: 1-2 3 KEYWORDS: LUNG, AQUATOX-A SUMMARY OF ASSESSMENT: EATE: $\overline{\text{sol}}$ ids with mp's = unk °C (P) S = dispersible (P)vp < 1.0E-6 mm Hg or torr at 25 °C (P)</pre> bp > 500 °C (P)H < 1.0E-8 (P)log Koc > 4.5 (P)log fish BCF = 0.50 (P)POTW removal = 99% via sorption time for complete ultimate aerobic biodegradation > months sorption to soils and sediments = very strong PBT Potential: P3B1T1 *CEB FATE: migration to ground water = negligible Absorption nil all routes based on physical/chemical HEALTH: properties; concern for lung toxicity if inhaled via MW and lung over-load binding with membranes; concern for irritation to mucous membranes via binding; low to moderate concern for toxicity; *CEB HEALTH: Exposures to humans: inhalation ECOTOX: Predicted (P) and measured (M) toxicity values in mg/L (ppm) are: 0.280 P fish 96-h LC50 0.100 P daphnid 48-h LC50 = green algal 96-h EC50 = 0.040 P fish chronic value = 0.020 P daphnid ChV = 0 3007 P = 0.020 P algal ChV Predictions are based on SARs for polymers with SAR chemical class = polymer (P030315) and (P030316); pH7; effective concentrations based on 100%

active ingredients and nominal concentrations; hardness <180.0 mg/L as CaCO3 for fish and daphnids and 15 to 24 mg/L for green algae; and TOC <2.0 mg/L; high concern for toxicity; mitigation of toxicity expected in natural waters with TOC = 10 mg/L; mitigation factor = 100 times; low concern for environmental risk; assessment factor = 10.0 concern concentration > 1.0 with mitigation via 10 mg TOC/L; *CEB ECOTOX: No releases to water;

SAT Co-chair: Vince Nabholz, 564.8909

	BIOLOGICAL TEST INFORMATION						
Case Number:	P-03-0315- 0316	Date Received: 2/3/03	Rev. Init: NSH OECD Status: Incomplete Page: 1 of 1				
Other Data:	[]Ecotox	[]Fate	[X]Water solubility/Log P Complete, MSDS, p.26 %	óai			

	P-03-03	315	CAS RN:			Nor
Chemical Name:				Analo	ae.	1101
				Ariaio	ys. ——-	··
				Produ	ction Volum	ne:
Structure:			•			
MP:			BP:	>500	VP:	<0.0000
		DispersiblePhy				<0.0000
H2O Sol (g/L):	Est. Value	Dispersible Phy			VP: lid Log P:	<0.0000
H2O Sol (g/L): Endpoint (mg/L)			ysical State:			<0.0000
H2O Sol (g/L): Endpoint (mg/L) Fish 96-h	0.28		ysical State:			<0.0000
H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h	0.28		ysical State:			<0.0000
H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h	0.28 0.10 0.040		ysical State:			<0.0000
MP: H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV	0.28 0.10 0.040 0.016		ysical State:			<0.0000
H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h	0.28 0.10 0.040		ysical State:			<0.0000
H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV	0.28 0.10 0.040 0.016 0.007		ysical State:			<0.0000
H2O Sol (g/L): Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV	0.28 0.10 0.040 0.016 0.007		ysical State:			<0.0000

	DRT					
PMN:	P-03-031	16	CAS RN:			Non
Chemical Name:				Analog	as:	
						
				Produc	ction Volume	9:
Structure:						
MP:						
ivii .			lpp.	>500	VP.	<0.00000
H2O Sol (g/L):		DispersiblePhy	BP:	>500 Soli	VP:	<0.00000
	Est. Value	Dispersible Phy	sical State:		VP: d Log P:	<0.00000
H2O Sol (g/L): Endpoint (mg/L) Fish 96-h	Est. Value	Dispersible Phy Meas. Value				<0.00000
Endpoint (mg/L) Fish 96-h	0,28	T	sical State:			<0.00000
Endpoint (mg/L)	0.28	T	sical State:			<0.00000
Endpoint (mg/L) Fish 96-h Daphnid 48-h	0.28	T	sical State:			<0.00000
Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV	0.28 0.10 0.040 0.016	T	sical State:			<0.00000
Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h	0.28 0.10 0.040 0.016 0.007	T	sical State:			<0.00000
Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV	0.28 0.10 0.040 0.016	T	sical State:			<0.00000
Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV	0,28 0.10 0.040 0.016 0.007 0.020	Meas. Value	vsical State: Comments			<0.00000
Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV	0,28 0.10 0.040 0.016 0.007 0.020	T	vsical State: Comments			<0.00000
Endpoint (mg/L) Fish 96-h Daphnid 48-h Algal 96-h Fish ChV Daphnid ChV Algal ChV	0,28 0.10 0.040 0.016 0.007 0.020	Meas. Value	vsical State: Comments			<0.00000